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Summary 
We implemented three versions of the concurrent extensible hash table including a lock-free 
extensible hash table using CAS [1], which is based on a split-order list, a coarse-grained 
lock-based version, and a fine-grained lock-based version based on a two-level locking 
mechanism. Given the experimental results on a 12-core shared memory multiprocessor, we 
demonstrate that the lock-free version is more efficient and scalable in most cases and is 
significantly better than lock-based ones under heavy or skewed workloads.  
 
Project URL: https://xinzhu-cai.github.io/418project.github.io/ 

Background 
Extensible hash tables serve as a key building block of many high-performance concurrent 
systems. A typical extensible hash table contains directories that store addresses of the buckets 
in pointers, and each bucket holds an expected constant number of elements. The global depth 
denotes the number of bits used by the hash function to categorize the keys into directories. 
The number of directories is The local depth is associated with a bucket. If the local.2global depth  
depth of a bucket is equal to the global depth of the hash table, there is only one pointer to the 
bucket. Otherwise, there exists more than one pointer from the directory to the bucket, and the 
bucket can be split. When a bucket is full with a local depth equal to the global depth, inserting a 
new element leads to a bucket overflow and further a directory expansion. 



 

 
Structure of an extensible hash table 

(https://www.geeksforgeeks.org/extendible-hashing-dynamic-approach-to-dbms/) 
 
The concurrent extensible hash tables we implemented is created by passing an int value to 
specify the load factor and it supports the following three key operations: 
 
/** 

* Create a new extensible hash table with a specified load_factor. 
Initially, there is only one bucket. More buckets are created as 

the number of elements exceed load_factor value. 

* @param bucket_size max number of elements stored in a bucket 

*/ 

ConcurrentExtensibleHashTable(int load_factor) 
 
/** 

* Find a key in the extensible hash table. 

* @param key: used to find the corresponding value 

* @param value: used to store the found value 

* returns true and stores result in value if the key exists in the 

hash table; returns false otherwise. 

*/ 
bool find(hash_key_t key, hash_value_t *value) 
 

/** 

* Insert a key-value pair into the extensible hash table. 

* Update the corresponding value if the key already exists in the 

hash table. 

https://www.geeksforgeeks.org/extendible-hashing-dynamic-approach-to-dbms/


 

* @param key: key to be inserted 

* @param value: value to be inserted 

* Return true if the key already exists in the hash table 

*/ 

bool put(hash_key_t key, hash_value_t value) 
 

/** 

* Remove a key-value pair based on the key from the extensible hash 

table. 

* @param key: used to identify the key-value pair to be removed 

* Return true if the key exists in the hash table and has been 

removed  

**/ 

Bool remove(hash_key_t key) 
 
Note that both hash_key_t and hash_value_t are uint64_t in our implementation. 
They can be generalized to other types.  
 
The sequential extensible hash table only allows one operation at a time. Intuitively, multiple find 
operations can run in parallel as long as the hash table is not being updated during this process. 
Moreover, multiple remove and insert operations can run in parallel on different buckets as long 
as the directories structure does not change.  
 
In an extensible hash table, each operation should first access directories, get a bucket address 
based on the key and directories, and then access the corresponding bucket. Remove() and 
Put() might change the content of directories, so this program is not data parallel. It is not 
amenable to SIMD execution either.  
 
Therefore, we focus on implementing concurrent extensible hash tables on multiprocessor 
machines, where efficient synchronization of concurrent access to data structures is essential. 

Approach 
Targeting modern multiprocessor machines, we implement a C++ library that contains a 
concurrent extensible hash table interface and three implementations: a coarse-grained 
lock-based version, a fine-grained lock-based version, and a lock-free version. There can be 
multiple threads executing operations on the same concurrent extensible hash table at the same 
time.  

Coarse-grained Lock-based Hash Table Implementation 
For the coarse-grained hash table, we used a single reader-writer lock to protect the whole hash 
table. That means to protect the logic inside of find() with the read lock and protect the logic 



 

inside of both put() and remove() with the write lock. This actually leads to sequential put() and 
remove() execution, and only find() operations can be run in parallel. Thus, there exists 
significant overheads. 
 

Fine-grained Lock-based Hash Table Implementation  
To obtain a higher concurrency degree, in the fine-grained version, we designed and 
implemented a two-level locking mechanism. There is a reader-writer lock for every bucket for 
insert and delete operations besides the global lock for directories.  

 
 
In find(), we grab the global read lock and then the read lock of the corresponding bucket. Note 
that, to avoid deadlocks, the global lock is always taken before bucket locks and released after 
bucket locks. 
 
In put(), we first grab the global read lock and the write lock of the corresponding bucket that 
contains the specified element. It directly updates the bucket if the bucket is not full yet or the 
bucket already contains this key. Otherwise, it shall restart by taking the global write lock and 
the write lock of the corresponding bucket because the bucket will split and result in changes in 
directories. The size of directories may be doubled if the local depth of this bucket is the same 
as the global depth. In that case, the bucket pointers contained in directories will need to be 
updated accordingly. 
 
Similar to put(), in remove(), we first grab the global read lock and the write lock of the 
corresponding bucket that contains the specified element. It directly returns false if there is no 



 

such key in the bucket. Otherwise, we remove the key-value pair and grab the global write lock. 
Then we merge the bucket with its pair if it becomes empty and half the size of directories if half 
of them point to empty buckets.  

Even with the fine-grained version, the resize operation remains a global process of 
redistributing the elements in all the hash table’s buckets among newly added buckets. A global 
write lock is unavoidable on resizing. Resizing is necessary as more buckets are created. 
Lock-free algorithms are proposed to overcome this drawback. 

Lock-free Hash Table Implementation 
Lock-free algorithms are an appealing alternative to lock-based ones as they utilize strong 
primitives such as CAS to achieve fine-grained synchronization. The main difficulty of lock-free 
extendible hashing is that when resizing the table, several items from old buckets must be 
moved to new buckets, which cannot be achieved via a single CAS instruction. The paper [1] we 
are implementing proposes to utilize a recursive split-order list structure to eliminate the 
requirement of double-compare-and-swap instructions on the underlying hardware.  
 
The authors proposed to move buckets among items instead of moving the items among the 
buckets. Unlike moving an item, the operation of directing a bucket pointer can be done in a 
single CAS operation, and since items are not moved, they are never lost.  

 
There are two key data structures: a bucket list and an ordered lock-free linked list. The basic 
idea is to keep all the items in one ordered lock-free linked list, and gradually assign the bucket 
pointers to the places in the list where a sublist of correct items can be found. Every bucket in 
the bucket list stores a corresponding dummy head node in this linked list. This algorithm 
requires items in the list to be sorted on binary reversal representation of keys such that items in 
a given bucket are adjacent in the list throughout the repeated splitting process as more 
elements are inserted. Any bucket’s sublist can be split by directing a new bucket pointer within 
it and this operation is recursively repeatable with the help of storing binary reversal 
representations of keys.  
 
As shown in the following figure, there are 3 dummy nodes stored in the bucket list with the 
original key as 0, 1 and 3. The split-order of 1 is 10000000 and the split-order of 3 is 1100000. 
The least-significant-bits of non-dummy nodes’ split orders are set to 1. Node 8 belongs to the 
first bucket because its split-order is less than 10000000 but greater than 0000000. 



 

 
                   Figure 2: Structure of the lock-free extensible hash table 

In find(), we find the dummy node pointer of the bucket the input key belongs to. Note that 
whenever we find a bucket to be accessed has not been initialized yet, a dummy node is 
created and inserted into the linked list first. All updates including inserting nodes, deleting 
nodes, and resizing bucket list are done atomically with the help of CAS.  
 
In put(), we create a node containing the input key-value pair and insert into the linked list 
following the corresponding bucket dummy node while maintaining the sort order. The bucket 
list is resized when the average number of elements in buckets exceed load_factor. 
 
Similarly, In remove(), Then we find the key-value node by following the dummy node pointer of 
the corresponding bucket in the ordered linked list and delete it.  
 
We also explored several optimization techniques: 

● Lazy deletion A node is marked as delete inside of remove(). It is actually deleted 
during list traversal. This is used to improve the response time of remove() operations.  
 

● Dynamic-sized array optimization technique proposed in paper [1]. It introduces an 
additional level of indirection for accessing buckets: a “main” array points to segments of 
buckets, each of which is a bucket array. This is to avoid the unnecessary overhead of 
having all other processes waiting while one process is trying to reallocate the bucket 
table. Here, a segment is allocated only on the first access to some bucket within it. This 
segment table is much smaller than the original bucket table.  



 

 
        Figure 3: lock-free extensible hash table with dynamic sized array optimization optimization 

Experiments 
We ran a series of tests to evaluate the performance of our 3 implementations: Coarse-grained 
Lock-based, Fine-grained Lock-based, and Lock-free Hash Table. 

Experimental Setup 
Varying different variables, we came up with a series of tests to observe the performance of the 
algorithm and how it is affected by each of these variables. The main metric we used for 
performance comparison is the operation throughput that is defined as the number of operations 
per microsecond (ops/ms). Speedup is calculated by using a single-threaded CPU code as 
baseline. The OpenMP framework is used to run operations with multiple threads concurrently. 
In each experiment, threads repeatedly do the find, put, and remove operations. The problem 
size of our project is the number of threads rather than the number of elements being processed 
since we want to measure the contention levels of every concurrent extensible hash table 
implementation. We run experiments on a Mac machine with 12 cores.  

Tests 
To evaluate the efficiency, scalability and execution behavior of the three implementations, we 
conducted extensive tests with: 

● various workload scales that have 1E4, 1E5, and 1E6 operations (Test #1)  
● various operation distributions including a typical one (Test #1) with 10% put operations, 

88% find operations, and 2% remove operation, a regularly distributed one (Test #2) with 
30% puts, 40% finds, 30% removes, and a insertion heavy distribution (Test #3) with 
10% finds and 90% puts.  



 

● various load factors (Test #4) from 2 to 12 to measure the effect of load factor on 
execution behavior. 

● various workload types including a randomized workload (Test #1), a workload with high 
collision rate (Test #5), a skewed workload (Test #6), sorted workloads (Test #7, Test 
#8). 

 
Our tests measure the total wall-clock time it takes to complete 100000 operations on each 
different hash table implementation along with a serial implementation with no measures for 
concurrency.  We tested with up to 12 threads, a number chosen because attempts to run on 
machines with more cores yielded unsuccessful. All tests were given randomized inputs except 
the ones where it is otherwise noted, set to the same seed prior to every test.  
 
Worth mentioning is that we distributed these operations to be mixed in order, i.e. not all inserts 
first, then all finds, then all deletes, but instead weaved with each other. The interleaving is 
front-loaded with each thread beginning to perform the types of operations in a round-robin 
fashion, then as it has performed all the operations of one type specified, it simply continues 
with the remaining types.  
 

Test #1 - Varying Workload Sizes 

Description 
For this test we observe the performance of operating on the hash table with a typical operation 
distribution for hash tables: 10% put operations, 88% find operations, and 2% remove 
operations and a load factor of 3. We varied the workload size - that is, the number of 
operations - and ran this performance test with 1E4, 1E5, and 1E6 operations. Additionally, we 
showed the speedup graph with the 1E5 workload size.  

Observations & Analysis 
Under a typical operation distribution, the lock-free implementation achieves a 10x throughput 
compared with the lock-based ones. In addition, its throughput keeps increasing as the number 
of threads increases. That means the lock-free one is more efficient and scalable. From the 
speedup figure, we know that the lock-free implementation is able to significantly improve the 
performance. In comparison, the fine-grained lock-based implementation could achieve some 
speedup but does not scale as the number of threads increases. We will explain why this 
happened in the Deeper Analysis section. The coarse-grained one becomes even worse as the 
number of threads increases.  
 
Another goal behind this test was to see whether the execution behavior of different 
implementations change as workload size changes. The workload size is considered as the 
number of operations to be executed. We set it in three scales so that it is not too small that 
other factors besides the ones we are controlling could affect the results, and not too large that 
it would take an unnecessary amount of time to run the tests. At all three scales, our lock-free 



 

implementation achieved a similar overall increasing tendency. Since we only record results of 
one run, some decreasing points could be considered as noise.  
 

 
 

 



 

 
 

 
 

Test #2 - Regularly Distributed Operations 

Description 
For this test we perform the same procedure followed in Test #1, for 100,000 elements, with a 
more even distribution of operations: 30% put, 40% find, 30% remove. This allows us to see the 
performance under an update intensive operation distribution. 

Observations & Analysis 
The lock-free implementation has good throughput results, however the lock-based ones 
decline as the number of threads is increased. On one hand, performance of the lock-free 



 

implementation is not affected by having more updates. On the other hand, performance of 
lock-based ones hurts a lot compared with results shown in Test#1 as when there are more 
update operations including put() and remove() than find() operations. This makes sense 
because lock-based ones rely on a global write lock to protect the directories when they need to 
be updated and we can expect the directories to be updated more frequently under a 
update-heavy operation distribution. 
 

 
 

Test #3 - Heavy Insertion  

Description 
For this test we perform the same procedure followed in Test #1, for 100,000 elements, with a 
distribution of operations heavily focused on insertions: 10% finds and 90% puts. This workload 
demonstrates performance for the most complicated operation of the three. 

Observations & Analysis  
From the following figure, we know that the lock-free implementation follows the expected 
speedup trend. The throughput of the fine-grained lock-based implementation increases from 2 
to 4 threads but tapers down afterwards. The coarse-grained implementation seems to suffer 
more heavily in performance as threads are increased and does not see any throughput 
improvement. Similar to Test #2, the lock-based implementations suffer on this update-heavy 
operation distribution.  
 



 

 
 

Test #4 - Effect of Load Factor 

Description 
With the same operation distribution as Test #1 - 10% puts, 88% finds, and 2% removes - and 
100000 operations, we vary the load factor (3 for all other tests) and run the workload with 8 
threads. 

Observations & Analysis 
The peak performance for the lock-free implementation is at a smaller load factor, with the 
highest ops/ms at a load factor of 4. This aligns with what we learned from our research [1], 
which recommended a load factor of 3 for testing a lock-free extensible hash table. The 
lock-based implementations did not see much of a variation in performance throughout, and the 
lowest performance among the different load factors for these two implementations was at out 
minimum load factor of 2. For the fine-grained implementation in particular, a load factor of 
greater than 8 was advantageous to smaller ones. This is because there is one lock per bucket. 
As lock factor increases, the number of locks created in the fine-grained implementation 
decreases, leading to less locking overhead.  
 



 

 

 

Test #5 - Workload with High Collision Rate 

Description 
Using the same even operation distribution as in Test #3, 30% inserts, 40% finds, and 30% 
deletes. However, this test inserts random keys only from range [0,9], resulting in a high amount 
of collisions. With a high amount of collisions, we can observe how the algorithms perform with 
a high level of contention for specific nodes. 

Observations & Analysis 
The lock-free implementation sees the expected increasing speedup that was observed in Test 
#2, which has the same operation distribution, but the lock-based implementations more heavily 
suffer from the collisions: they drastically slow down as threads increase. To note about the first 



 

data point in the lock-free implementation, 2 threads, however, is that is is greater than on Test 
#2 which utilizes random keys. This can be speculated to be that because of the smaller amount 
of keys, finds can occur faster. 
 

 
 

Test #6 - Skewed Workload 

Description 
Using the same even operation distribution as in Test #3, 30% puts, 40% finds, and 30% 
removes. However, the workload is skewed in the range of keys inserted into the hash table. 
The first 10% inserts fall in the range [0,99], the next 10% in [1000,4999], and the last 10% in 
[5000,8999]. 

Observations & Analysis 
The lock-free implementation sees the expected increasing speedup that was observed in Test 
#2, which has the same operation distribution. The lock-free implementation did not see much 
change from a regularly distributed workload as in Test #2, except for the first data point being 
noticeably higher than on Test #2, matching results with Test #5 which also shares the 
characteristic of having a smaller set of keys assigned. The lock-base implementations, 
however, did see a sharper decrease in ops/ms as the number of threads was increased than 
on Test #2, due to the extra contention introduced by this workload, as we saw how drastically 
this can affect the performance from Test #5. 
 



 

 
 

Test #7 - Ascending Keys 

Description 
Using the same even operation distribution as in Test #3, 30% puts, 40% finds, and 30% 
removes. Keys are inserted into the hash table in ascending order. This lets us observe how the 
location where insertion into the linked list that represents the hashtable is significant. 

Observations & Analysis 
The lock-free implementation sees the expected increasing speedup that was observed in Test 
#2, which has the same operation distribution, but similar to Test #6 and Test #5, the first data 
point for the lock-free implementation was noticeably higher than on a randomized workload. 
The reason for this is be different than the inferred reason for this occurring on Tests #5 and #6, 
it could be that because there are no repeated keys (strictly ascending), this results in no 
collisions and therefore higher performance from the start. 
 



 

 
 

Test #8 - Descending Keys 

Description 
Using the same even operation distribution as in Test #3, 30% inserts, 40% finds, and 30% 
deletes. Keys are inserted into the hash table in descending order. This lets us observe how the 
location where insertion into the linked list that represents the hashtable is significant. 

Observations 
Extremely similar results to Test #7, indicating that the ops/ms are definitely affected by either 
ascending or descending order in a very similar fashion. 
 

 



 

 

Test Comparisons 

Lock-Free Performance 
Following all the tests, we compared the performance of the lock-free implementations across 
all tests that varied in thread count: 
 

 
 
The highest performance tests were Test #5 and #3. This could indicate that insert operations 
are the fastest as Test #3 is 90% insertion operations. Test #5, on the other hand, while only 
having 30% insertion operations, had a small range of keys to insert, which is most likely the 
cause of it performing so well. After that is Test #1, a 10:88:2 INS:FIND:DEL operation 
distribution with random keys, which was our base benchmark. The other tests perform more 
poorly and in general indicate that on non-random workloads, skewed in some way or another, 
the hash table does not perform as well. Following we explore the different groups of tests in 
more detail. 



 

Varying Workload Sizes 
Below this are the graphs for the tests that varied in workload size. For the lock-free 
implementation, 1E+05 operations proved the most consistent. For the coarse-grained 
lock-based implementation, all three workload sizes performed rather poorly, with negative 
speedup, along the same trendline. Finally, for the fine-grained lock-based implementation, the 
trend was no speedup, but 1E+04 and 1E+05 workload sizes were most consistent to this. In 
this implementation as well as the other two, although most visibly the lock-free implementation, 
1E+06 operations showed the most variance, possibly indicating that we’ve hit a memory 
threshold of structure size that impacts performance negatively. 

 



 

Varying Workload Types 
In these comparisons, we can see two trends: The high collision rate tests perform best for all 
implementations and that a randomized workload performs better than the rest (besides high 
collision rate) only in the lock-free implementation. The very likely cause of the fast performance 
of the high collision rate workload is that the penalty in performance incurred by the high 
collision rate is offset by the performance gain in a much smaller range of keys being inserted. 
The randomized workload performing better on the lock-free implementation indicates that this 
implementation is more sensitive to the values of the keys it is given than the others, and seems 
to be optimized to work under an even distribution such as at random. 

 

 



 

 
 

Varying Operation Distributions 
By comparing each algorithm individually we can spot clear trends in this comparison. In both 
the lock-free implementation and the fine-grained lock-based implementation, a 10:88:2 
INS:FIND:DEL operation distribution outperforms the 90:10:0 distribution at lower levels of 
parallelism but gets overtaken at higher levels. At the same time it always outperforms a 
30:40:30 distribution. For the course-grained implementation, however, all of the distributions 
seem to follow the same trend besides a stark difference in speed at low parallelism, 2 threads. 
In this case, the 90:10:0 is still below the other distributions as it is in the other implementations. 
All the inputs for these tests are randomized, and thus we can conclude that as the general rule 
for our implementations, that inserts and finds tend to be less intensive operations than deletes 
for concurrent hash table implementations. 

 



 

 

 

Further Experiments 
Due to time constraints, we were not able to perform all the experiments we would have like  to 
better understand the performance of our concurrent hash table implementations, but the ones 
we had in mind were: 

More Parallelism on Dedicated Machines 
Due to time constraints, we were unable to test the hash table implementations on machines 
with more than 12 processors. At higher parallelism, there can be more contention and those 
results would have provided further insight. 

Synchronization Measurements 
Under different workloads, we could have measured the time each implementation spent while 
waiting for another thread as opposed to how much time was spent executing implementation 
code. 



 

Testing Against an Optimized Version of the Lock-Free Implementation 
The paper by Shalev, Ori, and Nir Shavit [1] described possible optimizations to their lock-free 
implementation, which we were unable to completely produce due to time limitations. 

Deeper Analysis 

Profiling Lock-based Implementations 
The experimental results consistently show that both the fine-grained lock-based and the 
coarse-grained lock based implementations achieved a poor throughput and do not scale well 
as the number of cores increase. We profiled the program to explore the bottleneck.  
 
We obtained the following frame graph after running the three implementations with 12 threads 
under Test #1 setting. 64% of execution time is spent on 
CoarseLockBasedExtensibleHashTable::find(); 2.44% is spent on 
CoarseLockBasedExtensibleHashTable::put(); 29% is spent on 
FineLockBasedExtensibleHashTable::find(); 1.42% is spent on 
FineLockBasedExtensibleHashTable::put();  0.74% is spent on 
LockFreeExtensibleHashTable::find(). 

 
About 10% time is used to create and destroy unique_lock. This indicates that the lock 
implementation is inefficient. Our current read-write lock implementation prefers writers. 
Implementing a more efficient read-write lock in necessary for performance. 
 
The speedup of the fine-grained lock-based implementation is also limited by the number of 
locks we use to protect data structures. Our implementation assigns one lock per bucket. 
Compared with the highly optimized lock-based implementation in the Java Concurrency 
Package[2], there are several ways we could improve: 1. Use a more sophisticated locking 
scheme that involves a small number of high level locks rather than a lock per bucket; 2. Allow 
concurrent searches while resizing the table, but not concurrent inserts or deletes.  



 

Profiling Lock-free Implementation 
Our optimization flag was -O0. Once we compiled our library with an -O3 flag, we observed a 
throughput improvement by about 5%.  
 
During the development process, we profiled our lock-free implementation with 6 threads under 
test#1 setting. About 60% of the execution time is spent on omp::wait(); 10% on 
LockFreeExtensibleHashTable::find(); 10% on 
LockFreeExtensibleHashTable::~LockFreeExtensibleHashTable(). We found that the 
deconstructor is taking a long time because we used an unorder_set to ensure memory safety. 
However, this was not necessary. Therefore, we conducted memory management more 
carefully in other functions and erased the use of unorder_set without hurting correctness.  

 

 
 
After this optimization, we profiled again and found that only 2% time is spent on the 
deconstructor.  



 

 
We show the detailed time distribution among the three key operations here 
Put(4.72%) : so_regular_key 1.89% list_insert 0.94%, initialize_bucket 0.94%, Node constructor 
0.94% 
Remove(2.83%): list_delete 1.89% 
Find (2.83%): list_find 2% 
 
 
 
We also profiled the lock-free implementation on a workload containing 30% puts 30% removes 
40% finds with 6 threads. The time taken by three key operations were: Put (6.90%), Find 
(3.3%), Remove (4.06%). Compared with test #1, Put() and Remove() took a longer time on test 
#2 because their percentage increased.  
 
We found that in both test#1 and test#2, the kmp_fork_barrier in the omp library took about 80% 
of the execution time. That means scheduling and synchronization overhead is the bottleneck of 
our lock-free implementation.  
 

 
Besides this, we found that the following function took nearly 2% of the total time. 
so_regular_key is used to reverse a 64-bit int. Therefore, improving the performance of it is a 
potential direction to improve the overall throughput.  



 

 
 

Conclusion 
In this project, we implemented both lock-free and lock-based extensible hash tables and found 
that the lock-free extensible hash table is consistently more efficient, scalable compared with 
the lock-based ones. 

Our lock-free implementation achieved stable performance on various workload scales. It 
achieved better performance on typical workloads than skewed and sorted ones.  

Based on profiling results, efficiency of the lock implementation and the one lock per bucket 
schema are the bottleneck of our fine-grained lock-based implementation  

Scheduling and synchronization are the bottleneck of our lock-free implementation. Further, we 
can improve the efficiency of calculating split-order keys in the lock-free implementation to 
improve the overall performance. 

List of Work by Students 
List of Xinzhu’s work: 

● Implemented coarse-grained lock-based extensible hash table 
● Implemented fine-grained lock-based extensible hash table 
● Implemented lock-free extensible hash table 
● Unit test for correctness 
● Designed performance tests  
● Optimization & Analysis 
● Final poster and report (Cooperate) 

 
List of Danié’s work:  

● Studying options of machines for running tests on 
● Creating performance tests 
● Studying and verification of implementations 
● Creating graphs and Final Report Experiment Section 
● Final poster and report (Cooperate) 

 
Distribution of total credit: 
60% (Xinzhu) - 40%(Danié) 
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