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Background & Goal

e Goal: Implement a concurrent extensible hash table library using C++
e Target Machine: shared memory multiprocessor
e LibraryInterface:

ConcurrentExtensibleHashTable (int load factor)
bool find (hash key t key, hash value t *value)
bool put (hash key t key, hash value t value)
Bool remove (hash key t key)

- Implementations potentially allow running all three operations in parallel
-> Coarse-grained Lock-based extensible hash table
->  Fine-grained Lock-based extensible hash table
-> Lock-free extensible hash table



Lock-based Extensible Hash Table
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Lock-free Extensible Hash Table [1]

e A Recursive split-ordered linked list
o  Sorted on binary reversal of keys

o eg:thesplit-order of key 13 is
reverse(00001101) = 10110000,

e Abucket list
o adummy node at the start of each
sub-list ( bucket)

Pros: Perform the resizing and bucket splitting
by only directing additional pointers into the
list, and does not move any item

Cons: Implementation complexity and specific
assumption

Ordered Linked List
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[1] Shalev, Ori, and Nir Shavit. "Split-ordered lists: Lock-free extensible hash tables." Journal of the ACM (JACM) 53.3 (2006):

379-405.



Performance Comparison

Machine: Mac with 12 cores.
Run on a typical workload containing 100k operations: 10% put, 88% find, and 2% remove.

Tested with the OpenMP framework
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The lock-free implementation is more efficient and scalable



Varying Workload Sizes Stable performance under different workload sizes
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Varying Workload Types Skewed & Sorted workloads hurt performance

LOCK-FREE WORKLOAD TYPES FINE-GRAINED LOCK-BASED COARSE-GRAINED LOCK-BASED
b R, et i GOSN RS E s S WORKLOAD TYPES WORKLOAD TYPES
——Ascending Descending —+— Randomized —@— High Collision Rate —s— Skewed —+—Randomized —m— High Collision Rate —s— Skewed
30000 Ascending Descending Ascending Descending

2
7 15000 £ 3000 ﬁ .
° 1000 £ 2000 T Pt
10000 . o 2000 S 2000
o e _

5000 1000 —— i 000

— % : 1000 s 7__w¥ . aE

0 (] 0 [ aee——

0 2 4 6 8 10 12 12 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

THREADS THREADS THREADS



Effect of Load Factor
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Conclusion

Summary

The lock-free extensible hash table is more efficient, scalable compared with the lock-based ones
Our lock-free implementation achieved stable performance on various workload scales

Better performance on typical workloads than skewed and sorted ones

Better performance when the percentage of find operations is higher

Future Work

e Based on profiling results, efficiency of the lock implementation and the one lock per bucket
schema are the bottleneck of our fine-grained lock-based implementation
e Schedulingis the bottleneck of lock-free implementation

e Further improve efficiency of calculating split-order keys in the lock-free implementation
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