Concurrent Extensible Hash Table

https://xinzhu-cai.github.io/418project.github.io/
Team Members: Danié Alvarado, Xinzhu Cai

Background & Goal

e Goal: Implement a concurrent extensible hash table library using C++
e Target Machine: shared memory multiprocessor
e LibraryInterface:

ConcurrentExtensibleHashTable (int load factor)
bool find (hash key t key, hash value t *value)
bool put (hash key t key, hash value t value)
Bool remove (hash key t key)

- Implementations potentially allow running all three operations in parallel
-> Coarse-grained Lock-based extensible hash table
-> Fine-grained Lock-based extensible hash table
-> Lock-free extensible hash table

Lock-based Extensible Hash Table

Global Depth = 2

Local Depth = 2

)) / Bucket0 “RW Lock >
e Coarse-grained Locking Schema 00 R,

Asingle RW lock to protect the Local Depth = 2

whole data structure 01 '
| Bucket1 RW Lock

e Fine-grained Locking Schema et

. Global Lock
Asingle RW lock to protect 55
directories Local Depth = 1
A RW lock per bucket N\
03 P Bucket2 RW Lock ~
Pros: Simple to implement
Directories

Cons: Resizing and bucket splitting become =
a bottleneck as they require taking the RW Lock Bucket Lock for Fine-grained Locking Schema

global write lock - _
@ Global Lock for Both Locking Schemas

Lock-free Extensible Hash Table [1]

e A Recursive split-ordered linked list
o Sorted on binary reversal of keys

o eg:thesplit-order of key 13 is
reverse(00001101) = 10110000,

e Abucket list
o adummy node at the start of each
sub-list (bucket)

Pros: Perform the resizing and bucket splitting
by only directing additional pointers into the
list, and does not move any item

Cons: Implementation complexity and specific
assumption

Ordered Linked List

00010001 10010001 11000000
00000000 10000000 10110001 11100001

o b D1 O DABD3 B B

S

Bucket List

[1] Shalev, Ori, and Nir Shavit. "Split-ordered lists: Lock-free extensible hash tables." Journal of the ACM (JACM) 53.3 (2006):

379-405.

Performance Comparison

Machine: Mac with 12 cores.
Run on a typical workload containing 100k operations: 10% put, 88% find, and 2% remove.

Tested with the OpenMP framework

100,000 OPERATIONS 100,000 OPS SPEEDUP
—p lock-free - fine-grained lock-based —p— lock-free —m—finegrained lock-based coarse-grained lock-basad
-4 COarse-grained lock-basad serid 25

25000
uuuuu

nnnnn
uuuuu

15
2 1500 g
o |
& annnn wn
S 1000

(=]

THREADS

The lock-free implementation is more efficient and scalable

Varying Workload Sizes Stable performance under different workload sizes

LOCK-FREE VARYING WORKLOAD COARSE-GRAINED LOCK-BASED FINE-GRAINED LOCK-BASED
SIZES VARYING WORKLOAD SIZES VARYING WORKLOAD SIZES
——1E+04 —m—1E+05 —a—1E+06 ——1E+08 —m—1E+05 —a—1E+06 —— 16404 —m—1E+05 —u— 1E+06
25000 1000 1000
20000 800 800 M
¢ 15000 2 50 2 600 i _
£ 10000 £ 400 £ 400 \/
5000 200 200
0 0 0
0 2 4 6 8 10 12 14 0 2 s 6 8 10 12 14 0 2 4 5 8 10 12 14
THREADS THREADS THREADS

Varying Workload Types Skewed & Sorted workloads hurt performance

LOCK-FREE WORKLOAD TYPES FINE-GRAINED LOCK-BASED COARSE-GRAINED LOCK-BASED
b R, et i GOSN RS E s S WORKLOAD TYPES WORKLOAD TYPES
——Ascending Descending —+— Randomized —@— High Collision Rate —s— Skewed —+—Randomized —m— High Collision Rate —s— Skewed
30000 Ascending Descending Ascending Descending

2
7 15000 £ 3000 ﬁ .
° 1000 £ 2000 T Pt
10000 . o 2000 S 2000
o e _

5000 1000 —— i 000

— % : 1000 s 7__w¥ . aE

0 (] 0 [aee——

0 2 4 6 8 10 12 12 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

THREADS THREADS THREADS

Effect of Load Factor

VARYING LOAD FACTOR VARYING LOAD FACTOR, LOCK-BASED ThrOUghpU.tS Of.the IOCk-free. and
—t— lock-free —m—finegrained lock-based —— cOarse-grained lock-based —e— finegrained lock-based —@— coarse-grained lock-based Coa rse_gralned Implementatlons are
16000 v not affected by the load factor
%) 10000 600 .
g o - P S B o Throughput of the fine-grained
lock-based one increases as load
w8 E o = factor increases because one lock
LOAD FACTOR 0 2 4 6 8 10 12 14 per bucket
Varying Operation Distributions Percentage of update operations affects
throughputs of fine-grained and lock-free
LOCK-FREE OP DISTRIBUTIONS FINE-GRAINED LOCK-BASED COARSE-GRAINED LOCK-BASED
(INS:FIND:DEL) OP DISTRIBUTIONS (INS:FIND:DEL) OP DISTRIBUTIONS (INS:FIND:DEL)
—+—10:88:22 —@—30:40:30 —u—290:10:0 —e—10:88:2 —m—30:40: +—90:10- ——10:882 —gg—30:4¢ 1
g 1)\-‘—y—-——"—\. g 400 . \; —
? p/&\\\i\\H—__m 2 - e |
2 4 o L ! : 2 4 6 8 1 1 14 4 6 8 1 1 14

Conclusion

Summary

The lock-free extensible hash table is more efficient, scalable compared with the lock-based ones
Our lock-free implementation achieved stable performance on various workload scales

Better performance on typical workloads than skewed and sorted ones

Better performance when the percentage of find operations is higher

Future Work

e Based on profiling results, efficiency of the lock implementation and the one lock per bucket
schema are the bottleneck of our fine-grained lock-based implementation
e Schedulingis the bottleneck of lock-free implementation

e Further improve efficiency of calculating split-order keys in the lock-free implementation

‘,,, } [I [“ { ‘
. s e e T Tabls i
i 16 samples, 0.74% of parent, 0.41% of all

B
g 25
=

