
Concurrent Extensible Hash Table
https://xinzhu-cai.github.io/418project.github.io/
Team Members: Danié Alvarado, Xinzhu Cai

Background & Goal

● Goal: Implement a concurrent extensible hash table library using C++

● Target Machine : shared memory multiprocessor

● Library Interface:

 ConcurrentExtensibleHashTable (int load_factor)
 bool find(hash_key_t key, hash_value_t *value)
 bool put(hash_key_t key, hash_value_t value)
 Bool remove (hash_key_t key)

➔ Implementations potentially allow running all three operations in parallel

➔ Coarse-grained Lock-based extensible hash table

➔ Fine-grained Lock-based extensible hash table

➔ Lock-free extensible hash table

Lock-based Extensible Hash Table

● Coarse-grained Locking Schema

A single RW lock to protect the

whole data structure

● Fine-grained Locking Schema

A single RW lock to protect

directories

A RW lock per bucket

Pros: Simple to implement

Cons: Resizing and bucket splitting become

a bottleneck as they require taking the

global write lock

Lock-free Extensible Hash Table [1]

● A Recursive split-ordered linked list
○ Sorted on binary reversal of keys
○ eg : the split-order of key 13 is

reverse(00001101) = 10110000,

● A bucket list
○ a dummy node at the start of each

sub-list (bucket)

Pros: Perform the resizing and bucket splitting

by only directing additional pointers into the

list, and does not move any item

Cons: Implementation complexity and specific

assumption

Bucket List

Ordered Linked List

[1] Shalev, Ori, and Nir Shavit. "Split-ordered lists: Lock-free extensible hash tables." Journal of the ACM (JACM) 53.3 (2006):
379-405.

Performance Comparison
Machine: Mac with 12 cores.
Run on a typical workload containing 100k operations: 10% put, 88% find, and 2% remove.
Tested with the OpenMP framework

The lock-free implementation is more efficient and scalable

Varying Workload Sizes

Varying Workload Types

Stable performance under different workload sizes

Skewed & Sorted workloads hurt performance

Effect of Load Factor

Varying Operation Distributions

Throughputs of the lock-free and
coarse-grained implementations are
not affected by the load factor

Throughput of the fine-grained
lock-based one increases as load
factor increases because one lock
per bucket

Percentage of update operations affects
throughputs of fine-grained and lock-free

Conclusion

● The lock-free extensible hash table is more efficient, scalable compared with the lock-based ones

● Our lock-free implementation achieved stable performance on various workload scales

● Better performance on typical workloads than skewed and sorted ones

● Better performance when the percentage of find operations is higher

Summary

● Based on profiling results, efficiency of the lock implementation and the one lock per bucket

schema are the bottleneck of our fine-grained lock-based implementation

● Scheduling is the bottleneck of lock-free implementation

● Further improve efficiency of calculating split-order keys in the lock-free implementation

Future Work

